A SHORT INTRODUCTION TO THE
RANDAL-WILLTAMS-WAHL MACHINE

ZOE POPE

These notes were prepared for a talk I gave at the Talbot 2025/ workshop on
homological stability, mentored by Alexander Kupers and Nathalie Wahl. The
material for these notes is mainly based on the original article by Randal-Williams
and Wahl [RWW17] and on Wahl’s ICM survey [Wah23|.

The Randal-Williams—Wahl machine is a tool for proving homological stability
theorems for families of groups. Echoing classical results, the method axiomatizes
conditions sufficient to apply Quillen’s spectral sequence argument and obtain
homological stability theorems.

1. THE SETUP

A sequence of groups with group homomorphisms
LN NN R LN

(called a family of groups) exhibits homological stability if the maps (f,)« : H;(Gp) —
H;(Gy+1) are isomorphisms for n large relative to i. Motivated by classical families
of groups—symmetric groups, general linear groups, etc—we assume that these
families admit additional ‘block sum’ homomorphisms @, ., : Gn, X Gy, = Gpim
that induce the maps f; :

fi=—®i1e:G; = Giyr.

Viewing each G,, as the category BG,, with one object n and automorphism group
G, we assemble such a family into a monoidal groupoid G = Hn>0 BG,, with unit
object BGq := * and monoidal product @ : (n,m) — n + m induced by the block
sum structure.

FEzxample. The symmetric groups X, have block sums given by sticking two permu-
tations side by side, with stabilization maps adjoining the trivial permutation of
one letter to the right of any permutation. We then obtain ¥ :=]] ., BX,.

n=0

Though neither a necessary nor sufficient condition for a family of groups to exhibit
homological stability, the Randal-Williams—Wahl machine employs a braiding on
the monoidal groupoid to define the semisimplicial set needed for Quillen’s spectral
sequence argument.

Definition. A monoidal groupoid (G,®,0) is braided if it has isomorphisms bx y :
X®Y > Y ®X (called braiding isomorphisms) for all pairs of objects, satisfying
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the identity bxy bx zby,z = by,zbx zbxy and such that the following square
commutes for all f and g.

Wax —" , xow
(1) f@gl lg(ﬁf

Y®Z — ZY
Y,Z

A braided monoidal category is symmetric if by, xbxy = lxgy for all braiding
isomorphisms.

Ezample. By considering the braid groups B,, with block sum by sticking two braids
side by side, we obtain the braided monoidal groupoid B = ]_[n>0 BB,,. The braiding
isomorphisms are conjugations conj, by ‘block braid’ elements by, ;, € By 41 such
that the diagram in the following ﬁgﬁre commutes.

©On,m
! / By X By ——" B,
4
\/ ’:l lconj by
®m,n
x/ B, X By ———— B,

FIGURE 1. The block braid bs» [Wah23| figure 1]; the required
commuting square for conj b, ., to be a braiding isomorphism.

More generally, braided monoidal groupoids of the form [ [, -, BG,, have braiding
isomorphisms conj, 4, ) T @nim : Buim — Gram satisfying a similar square
to the one in .

Non-Example. Most families of groups with non-braided monoidal groupoid struc-
tures fail to exhibit homological stability. For example, the groups Z™ assemble
into a monoidal groupoid. However, conj Gt () fails to make the square in
commute for any choice of homomorphism ¢4 : Bpim — Z"T™ since Z"T™ is
abelian. Indeed, the maps Hi(Z") — Hy(Z"*!) are never isomorphisms as they
correspond to the inclusions Z" <« Z"*1 .

Viceversa, given a braided monoidal groupoid (G,®,0) we obtain a family of
groups as follows. Fixing a ‘starting point’ A € G and a ‘stabilization direction’
X € G, the monoidal product and stabilization direction give an endofunctor
—@® X : G — G. Applying this functor to the starting point repeatedly results in a
sequence of objects of G

AoX 25 Aox? 5 A X3 > ...
which induces the sequence
AUtQ(A@X) —Olx, Autg(A(—BXQ) — Autg(A(—BX3) —

For conciseness, we denote — @ 1x as — @ X.
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Ezample. Consider the symmetric monoidal groupoid (FinSet™, 1, &) of finite sets.
Letting A = ¢ and X = pt, we obtain up to isomorphism the sequence of symmetric
groups > — Yo — - -.

Ezample. Consider the symmetric monoidal groupoid (R-mod™,®,0) of R-modules.
Letting A = 0 and X = R, up to isomorphism we recover the sequence of general
linear groups GLi(R) - GLa(R) — ---.

Ezample. Consider the symmetric monoidal groupoid (Group™, x, ) of groups under
the free product. Letting A = e and X = Z, up to isomorphism we get the sequence
of automorphism groups of free groups Aut(F;) — Aut(Fp) — --- .

Work by Manuel Krannich further generalizes the Randal-Williams—Wahl machine
to the setting of modules over braided monoidal groupoids [Kral9, Section 7].

Definition. A (right) module M over a braided monoidal groupoid G is a groupoid
M with a strictly associative and unital (right) action

®:MxG—> M.

Just as before, picking a starting point A € M and stabilization direction X € G
produces an endofunctor — @ X : M — M that induces a sequence of groups

Autp(AD X) =25 Autp(AD X?) > Aut (A X3) — - .

Remark. The Randal-Williams—Wahl machinery requires braided monoidal groupoids
(or more generally modules over braided monoidal groupoids) to be strictly associative
and unital. We can always overcome this issue by instead considering the strict
braided monoidal groupoid | [, ., BAut(A® X" 1) (viewed as a module over itself).

n=0

Ezxample. All braided monoidal groupoids G are modules over themselves.

Example. Mapping class groups of surfaces Sy, with genus g and r boundary
components form a family of groups with respect to the genus, by considering maps
Sgr = Sgr+1 — Sg41,r via first gluing a pair of pants to a boundary component
and then gluing a pair of pants to two boundary components. We prove homological
stability theorems by considering the groupoid of ‘decorated surfaces’ (surfaces with
choice of boundaries within). Though not braided monoidal, it is a module over the
braided monoidal groupoid B =[], BB,. This is studied in [HVW24].

2. THE MACHINERY

Proving a homological stability theorem follows Quillen’s spectral sequence
argument. Summarily, for a family of groups G, 11 = Auty (A @ X"H1) with maps
— @ X, we want to construct a semisimplicial set W,,,1 with an action of G, 1
satisfying the following three properties:

(1) the action is transitive levelwise;
(2) —® X9 : Gy — Gpq1 is an isomorphism onto Stab(c,) for some
g-simplex o;

(3) W41 is homologically highly connected.
In particular, (1) and (2) imply that (Wy,41)q = Grt1/Gn—q. These requirements
suggest W, +1’s shape. Informally, g-simplices are equivalence classes of isomorphisms
B@®X11 = A@X"+! made by identifying isomorphic ‘complements’ B. Motivated
by this, we introduce the following definition:
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Definition. [Wah23| Definition 2.4 Fiz A€ M and X € G. The space of destabi-
lizations Wy, 11 = Wiy41(A, X) is the semisimplicial set with g-simplices

(Wins1)y = {(B,f)|BeM, f: B X" = A@X"“}/N
where (B, f) ~ (B', f') if there exists an isomorphism g : B —=> B’ in M such that
the following triangle commutes.
B@ Xat!
\
9@ X+ A@ X"t

e

B/ ® Xq+1

Whi1(A, X) has face maps d;[B, f] = [B® X, d; f] where

BOb  @X ;
dif : (B®X)® X1 ’ BeXt L A xnt!

and where b; « 18 a braiding isomorphism in G.

Remark. G,1 acts on this semisimplicial set via postcomposition. Also notice the
braiding isomorphisms in the face maps are needed to satisfy the relations to make
W41 a semisimplicial set.

Ezample. Consider FinSet™ as a module over itself. The g-simplices of W,,1(, pt)

are represented by isomorphisms B Lipt?*! = pt"*1. Since all possible complements
B are isomorphic, equivalence classes are in bijection with injections ptdt! < ptnt1,
The face maps d; : pt? < pt9*t! are then given by ‘forgetting’ the i*" point. This is
exactly the complex of injective words used to study homological stability of the

symmetric groups [RWW17, Section 5.1].

Ezample. Consider R-mod™ as a module over itself. The g-simplices of W,,11(0, R)
are represented by split injective homomorphisms RI*! < R"! with choice of

>~

complement B such that B@® Rt = R"*1.

Ezample. Consider Group™ as a module over itself. The g-simplices of W, ;1 (e, Z)
are represented by pairs (f, H) for f : A — B injective and H < B such that
B~ H = f(A).

Additional assumptions on W, 1(A4, X) are needed to apply Quillen’s spectral
sequence argument:
(1) Cancellation: B@® X9T! =~ A@® X"*! implies B~ A@® X"~ 9,
(2) Injectivity: —® X . G,,_q — Gpy1 is injective;
(3) Connectivity With Slope k: for all n, W,,;1(A, X) is homologically (21)-
connected.

Note for assumption (2) that the map — @ X 9! already has image the stabilizer
of o4 := [A® X" 9,1 ,gxn+1] as both are automorphisms that fix the last X9

Remark. In applications, showing connectivity is the crux and usually requires case-
by-case approaches. Cancellation and injectivity are easier to establish. Further,
injectivity can be disregarded if one works within an even more general setting

estabilished in [Kral9].
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3. THE THEOREM

Quillen’s spectral sequence argument produces a homological stability theorem for
(fn)s : Hi(Gp) — H;(Gp41) by constructing a spectral sequence whose convergence
implies that the maps (f)s are isomorphisms. We first make a double complex
whose vertical spectral sequence converges to 0 using the space of destabilizations
and its assumed connectivity property. We then use the cancellation and injectivity
properties to identify the maps (f,,)s with differentials in the horizontal spectral
sequence. The argument concludes by showing the only way the horizontal spectral
sequence converges to 0 is that the maps (f, )4 are isomorphisms.

Theorem. [RWW17, Theorem 3.1; Kral9, Theorem A] Let M be a right module
over a braided monoidal groupoid G. Pick Ae M, X € G, and fir k = 2. Assume
that cancellation, injectivity, and connectivity with slope k are satisfied. Then the
map
—-®X

Hy(G; Z) S22 H,(Gi1:7)
is an epimorphism for p < 7 and an isomorphism for p < "Tfl
Proof. Consider the double complex

E, Gn+1 ® C* n+1)

Gn+1

where F,G,, 11 is a free resolution of Z as a ZG,,+1-module and 6’*(Wn+1) is the
augmented cellular chain complex of W,, ;1. Fixing p, for all ¢ < "T_l we have that

VBl = Hy(EyGri1 ®c,,, Cx(Wpi1)) =0

as E,Gp41 is free and H (C*( Wi1)) = 0 for ¢ < 21 by the connectivity assump-
tion. Thus "E,, converges to 0 in the same range.
Fixing ¢, we have

hEzl)q ~ Hy(EoGni1 ®a,,,, Z[Gny1/Stab(o,)]) cancellation, orbit-stabilizer thm.

H,(Gpnt1;Z[Gpt1/ Stab(og)]) def. of homology with coefficients
~ H,(Stab(oy)) Shapiro’s Lemma
H,(Gn—q) injectivity

for o = [A® X", 1 4gxn+1]. To show that the differential d* : "E} — "E!
corresponds to the stabilization map (—@® X ), it suffices to show that the following
square commutes:

h ol di hpl
—>
EP:‘] E

p,g—1
® | I
®X
Hy(Crmg) — 2% Hy(Guegi)

where the vertical arrows are the sequence of isomorphisms above. To show this we
introduce the intermediary map

d; : Stab(o,) = Stab(diog) ——t> Stab(cy_1)
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where h; ;= A@ X" 1@ bx: x ® X7 ". By construction of h;, the map 0; is an
inclusion of subgroups of G,4;. This implies that the two following diagrams
commute

(WnJrl)q # (WnJrl)qfl anq i> anqul
| X s [
Gai1/Stab(og) —2 Gri1/Stab(oy_1) Stab(cy) —— Stab(o,_1)

and therefore (2) commutes. Taking alternating sums, we see that d* corresponds to

q
(—®X)« g even
—®X). =
i;)( & X {0 g odd.

Assuming ¢ = 0, we recover Hy,(Gy,) (=804, H,(Gp 1) within the "E'-page as
the differential d'. The proof concludes as explained in [RWW17, Theorem 3.1]
by showing that, for the horizontal spectral sequence to converge to 0, the d'
differentials must be epimorphisms or isomorphisms in the wanted ranges. ([l

The theorem allows us to recover classical results in homological stability. Note
that, while the induction argument prevents k < 2 without further assumptions,
we can improve the isomorphism range to “z* for any a by proving a different
homological connectivity result for W, ;1.

Ezample. To show homological stability for the symmetric groups ¥,,, we consider
(FinSet™, L, &) as a module over itself. It is straightforward to show W,,.1 (&, pt)
satisfies cancellation and injectivity. As explained in [RWW17, Section 5.1], the
complex of injective words W, 1 is (n — 1)-connected. Letting k = 2, the theorem
shows that

Hy(S,) S22% b o(5,4)

is an isomorphism for p < %5*. This was first shown by [Nak60|.

Ezample. To show homological stability for the general linear groups GL,(R),
we consider (R-mod™,®,0) as a module over itself. Injectivity is satisfied, but
cancellation fails for general rings R. However, rings with finite stable rank s
have the invariant basis number property (R® =~ R™ = n = m for n,m > s).
Considering only such rings, W,,+1(R*, R) satisfies injectivity, cancellation, and

(251)-connectivity [RWW17, Section 5.3]. The theorem then shows that

—-®R
Hy(GLun(R) 2% H,(GLysni(R))
is an isomorphism for p < 25%. This was first shown by [vdK80].

Ezample. To show homological stability for the automorphism groups of free groups
Aut(F,), we consider (Group™, #,e) as a module over itself. Injectivity holds for
Wrii(e,Z), and we can obtain cancellation via Grushko’s Decomposition Theorem.
It can also be shown that W,11(e, Z) is (“52)-connected [RWW17, Section 5.2].
The theorem then shows that

(=%2)

Hy(Aut(Fy)) —— Hy(Aut(Fp41))

is an isomorphism for p < "T_‘? This was first shown by |Galll].
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