
A SHORT INTRODUCTION TO THE
RANDAL-WILLIAMS–WAHL MACHINE

ZOË POPE

These notes were prepared for a talk I gave at the Talbot 2025 workshop on
homological stability, mentored by Alexander Kupers and Nathalie Wahl. The
material for these notes is mainly based on the original article by Randal-Williams
and Wahl [RWW17] and on Wahl’s ICM survey [Wah23].

The Randal-Williams–Wahl machine is a tool for proving homological stability
theorems for families of groups. Echoing classical results, the method axiomatizes
conditions sufficient to apply Quillen’s spectral sequence argument and obtain
homological stability theorems.

1. The Setup

A sequence of groups with group homomorphisms

G1
f1

ÝÑ G2
f2

ÝÑ G3
f3

ÝÑ ¨ ¨ ¨

(called a family of groups) exhibits homological stability if the maps pfnq˚ : HipGnq Ñ

HipGn`1q are isomorphisms for n large relative to i. Motivated by classical families
of groups—symmetric groups, general linear groups, etc—we assume that these
families admit additional ‘block sum’ homomorphisms ‘n,m : Gn ˆ Gm Ñ Gn`m

that induce the maps fi :

fi “ ´ ‘i,1 e : Gi Ñ Gi`1 .

Viewing each Gn as the category BGn with one object n and automorphism group
Gn, we assemble such a family into a monoidal groupoid G “

š

ně0 BGn with unit
object BG0 :“ ˚ and monoidal product ‘ : pn,mq ÞÑ n ` m induced by the block
sum structure.

Example. The symmetric groups Σn have block sums given by sticking two permu-
tations side by side, with stabilization maps adjoining the trivial permutation of
one letter to the right of any permutation. We then obtain Σ :“

š

ně0 BΣn.

Though neither a necessary nor sufficient condition for a family of groups to exhibit
homological stability, the Randal-Williams–Wahl machine employs a braiding on
the monoidal groupoid to define the semisimplicial set needed for Quillen’s spectral
sequence argument.

Definition. A monoidal groupoid pG,‘, 0q is braided if it has isomorphisms bX,Y :
X ‘ Y Ñ Y ‘ X (called braiding isomorphisms) for all pairs of objects, satisfying
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the identity bX,Y bX,Z bY,Z “ bY,Z bX,Z bX,Y and such that the following square
commutes for all f and g.

(1)
W ‘ X X ‘ W

Y ‘ Z Z ‘ Y

bW,X

f ‘ g g ‘ f

bY,Z

A braided monoidal category is symmetric if bY,XbX,Y “ 1X‘Y for all braiding
isomorphisms.

Example. By considering the braid groups Bn with block sum by sticking two braids
side by side, we obtain the braided monoidal groupoid B “

š

ně0 BBn. The braiding
isomorphisms are conjugations conj bn,m

by ‘block braid’ elements bn,m P Bn`m such
that the diagram in the following figure commutes.

Figure 1. The block braid b3,2 [Wah23, figure 1]; the required
commuting square for conj bn`m to be a braiding isomorphism.

More generally, braided monoidal groupoids of the form
š

ně0 BGn have braiding
isomorphisms conjϕn`mpbn,mq for ϕn`m : Bn`m Ñ Gn`m satisfying a similar square
to the one in (1).

Non-Example. Most families of groups with non-braided monoidal groupoid struc-
tures fail to exhibit homological stability. For example, the groups Zn assemble
into a monoidal groupoid. However, conjϕn`mpbn,mq fails to make the square in (1)
commute for any choice of homomorphism ϕn`m : Bn`m Ñ Zn`m since Zn`m is
abelian. Indeed, the maps H1pZnq Ñ H1pZn`1q are never isomorphisms as they
correspond to the inclusions Zn ãÑ Zn`1 .

Viceversa, given a braided monoidal groupoid pG,‘, 0q we obtain a family of
groups as follows. Fixing a ‘starting point’ A P G and a ‘stabilization direction’
X P G, the monoidal product and stabilization direction give an endofunctor
´ ‘ X : G Ñ G. Applying this functor to the starting point repeatedly results in a
sequence of objects of G

A ‘ X
´‘X

ÝÝÝÑ A ‘ X2 Ñ A ‘ X3 Ñ ¨ ¨ ¨

which induces the sequence

AutGpA ‘ Xq
´‘1X

ÝÝÝÝÑ AutGpA ‘ X2q Ñ AutGpA ‘ X3q Ñ ¨ ¨ ¨ .

For conciseness, we denote ´ ‘ 1X as ´ ‘ X.
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Example. Consider the symmetric monoidal groupoid pFinSet»,\,Hq of finite sets.
Letting A “ H and X “ pt, we obtain up to isomorphism the sequence of symmetric
groups Σ1 Ñ Σ2 Ñ ¨ ¨ ¨ .

Example. Consider the symmetric monoidal groupoid pR-mod»,‘, 0q of R-modules.
Letting A “ 0 and X “ R, up to isomorphism we recover the sequence of general
linear groups GL1pRq Ñ GL2pRq Ñ ¨ ¨ ¨ .

Example. Consider the symmetric monoidal groupoid pGroup», ˚, eq of groups under
the free product. Letting A “ e and X “ Z, up to isomorphism we get the sequence
of automorphism groups of free groups AutpF1q Ñ AutpF2q Ñ ¨ ¨ ¨ .

Work by Manuel Krannich further generalizes the Randal-Williams–Wahl machine
to the setting of modules over braided monoidal groupoids [Kra19, Section 7].

Definition. A (right) module M over a braided monoidal groupoid G is a groupoid
M with a strictly associative and unital (right) action

‘ : M ˆ G Ñ M.

Just as before, picking a starting point A P M and stabilization direction X P G
produces an endofunctor ´ ‘ X : M Ñ M that induces a sequence of groups

AutMpA ‘ Xq
´‘X

ÝÝÝÑ AutMpA ‘ X2q Ñ AutMpA ‘ X3q Ñ ¨ ¨ ¨ .

Remark. The Randal-Williams–Wahl machinery requires braided monoidal groupoids
(or more generally modules over braided monoidal groupoids) to be strictly associative
and unital. We can always overcome this issue by instead considering the strict
braided monoidal groupoid

š

ně0 BAutpA‘Xn`1q (viewed as a module over itself).

Example. All braided monoidal groupoids G are modules over themselves.

Example. Mapping class groups of surfaces Sg,r with genus g and r boundary
components form a family of groups with respect to the genus, by considering maps
Sg,r Ñ Sg,r`1 Ñ Sg`1,r via first gluing a pair of pants to a boundary component
and then gluing a pair of pants to two boundary components. We prove homological
stability theorems by considering the groupoid of ‘decorated surfaces’ (surfaces with
choice of boundaries within). Though not braided monoidal, it is a module over the
braided monoidal groupoid B “

š

ně0 BBn. This is studied in [HVW24].

2. The Machinery

Proving a homological stability theorem follows Quillen’s spectral sequence
argument. Summarily, for a family of groups Gn`1 “ AutMpA ‘ Xn`1q with maps
´ ‘ X, we want to construct a semisimplicial set Wn`1 with an action of Gn`1

satisfying the following three properties:
(1) the action is transitive levelwise;
(2) ´ ‘ Xq`1 : Gn´q Ñ Gn`1 is an isomorphism onto Stabpσqq for some

q-simplex σq;
(3) Wn`1 is homologically highly connected.

In particular, p1q and p2q imply that pWn`1qq – Gn`1{Gn´q. These requirements
suggest Wn`1’s shape. Informally, q-simplices are equivalence classes of isomorphisms
B‘Xq`1 –

ÝÑ A‘Xn`1 made by identifying isomorphic ‘complements’ B. Motivated
by this, we introduce the following definition:
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Definition. [Wah23, Definition 2.4] Fix A P M and X P G. The space of destabi-
lizations Wn`1 “ Wn`1pA,Xq is the semisimplicial set with q-simplices

pWn`1qq :“
tpB, fq |B P M, f : B ‘ Xq`1 –

ÝÑ A ‘ Xn`1u
ä„

where pB, fq „ pB1, f 1q if there exists an isomorphism g : B
–

ÝÑ B1 in M such that
the following triangle commutes.

B ‘ Xq`1

A ‘ Xn`1

B1 ‘ Xq`1

f

g ‘ Xq`1

f 1

Wn`1pA,Xq has face maps dirB, f s “ rB ‘ X, dif s where

dif : pB ‘ Xq ‘ Xq
B ‘ b´1

Xi,X
‘ Xq´i

ÝÝÝÝÝÝÝÝÝÝÝÑ B ‘ Xq`1 f
ÝÑ A ‘ Xn`1

and where b´1
Xi,X is a braiding isomorphism in G.

Remark. Gn`1 acts on this semisimplicial set via postcomposition. Also notice the
braiding isomorphisms in the face maps are needed to satisfy the relations to make
Wn`1 a semisimplicial set.

Example. Consider FinSet» as a module over itself. The q-simplices of Wn`1pH, ptq

are represented by isomorphisms B\ptq`1 –
ÝÑ ptn`1. Since all possible complements

B are isomorphic, equivalence classes are in bijection with injections ptq`1 ãÑ ptn`1.
The face maps di : pt

q ãÑ ptq`1 are then given by ‘forgetting’ the ith point. This is
exactly the complex of injective words used to study homological stability of the
symmetric groups [RWW17, Section 5.1].

Example. Consider R-mod» as a module over itself. The q-simplices of Wn`1p0, Rq

are represented by split injective homomorphisms Rq`1 ãÑ Rn`1 with choice of
complement B such that B ‘ Rq`1 –

ÝÑ Rn`1.

Example. Consider Group» as a module over itself. The q-simplices of Wn`1pe,Zq

are represented by pairs pf,Hq for f : A Ñ B injective and H ď B such that
B – H ˚ fpAq.

Additional assumptions on Wn`1pA,Xq are needed to apply Quillen’s spectral
sequence argument:

(1) Cancellation: B ‘ Xq`1 – A ‘ Xn`1 implies B – A ‘ Xn´q;
(2) Injectivity : ´ ‘ Xq`1 : Gn´q Ñ Gn`1 is injective;
(3) Connectivity With Slope k: for all n, Wn`1pA,Xq is homologically pn´1

k q-
connected.

Note for assumption (2) that the map ´ ‘ Xq`1 already has image the stabilizer
of σq :“ rA ‘ Xn´q, 1A‘Xn`1s as both are automorphisms that fix the last Xq`1.

Remark. In applications, showing connectivity is the crux and usually requires case-
by-case approaches. Cancellation and injectivity are easier to establish. Further,
injectivity can be disregarded if one works within an even more general setting
estabilished in [Kra19].



A SHORT INTRODUCTION TO THE RANDAL-WILLIAMS–WAHL MACHINE 5

3. The Theorem

Quillen’s spectral sequence argument produces a homological stability theorem for
pfnq˚ : HipGnq Ñ HipGn`1q by constructing a spectral sequence whose convergence
implies that the maps pfnq˚ are isomorphisms. We first make a double complex
whose vertical spectral sequence converges to 0 using the space of destabilizations
and its assumed connectivity property. We then use the cancellation and injectivity
properties to identify the maps pfnq˚ with differentials in the horizontal spectral
sequence. The argument concludes by showing the only way the horizontal spectral
sequence converges to 0 is that the maps pfnq˚ are isomorphisms.

Theorem. [RWW17, Theorem 3.1; Kra19, Theorem A] Let M be a right module
over a braided monoidal groupoid G. Pick A P M, X P G, and fix k ě 2. Assume
that cancellation, injectivity, and connectivity with slope k are satisfied. Then the
map

HppGn;Zq
p´‘Xq˚

ÝÝÝÝÝÑ HppGn`1;Zq

is an epimorphism for p ď n
k and an isomorphism for p ď n´1

k .

Proof. Consider the double complex

E‚Gn`1

â

Gn`1

rC˚pWn`1q

where E‚Gn`1 is a free resolution of Z as a ZGn`1-module and rC˚pWn`1q is the
augmented cellular chain complex of Wn`1. Fixing p, for all q ď n´1

k we have that

vE1
pq “ HqpEpGn`1 bGn`1

rC˚pWn`1qq – 0

as EpGn`1 is free and Hqp rC˚pWn`1qq – 0 for q ď n´1
k by the connectivity assump-

tion. Thus hEpq converges to 0 in the same range.
Fixing q, we have

hE1
pq – HppE‚Gn`1 bGn`1

ZrGn`1{Stabpσqqsq cancellation, orbit-stabilizer thm.
“ HppGn`1;ZrGn`1{Stabpσqqsq def. of homology with coefficients
– HppStabpσqqq Shapiro’s Lemma
– HppGn´qq injectivity

for σq “ rA ‘ Xn´q, 1A‘Xn`1s. To show that the differential d1 : hE1
pq Ñ hE1

p,q´1

corresponds to the stabilization map p´ ‘Xq˚, it suffices to show that the following
square commutes:

(2)

hE1
p,q

hE1
p,q´1

HppGn´qq HppGn´q`1q

di

– –

p´‘Xq˚

where the vertical arrows are the sequence of isomorphisms above. To show this we
introduce the intermediary map

Bi : Stabpσqq ãÑ Stabpdiσqq
conjhi

ÝÝÝÝÑ Stabpσq´1q
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where hi :“ A ‘ Xn´q ‘ bXi,X ‘ Xq´i. By construction of hi, the map Bi is an
inclusion of subgroups of Gn`1. This implies that the two following diagrams
commute

pWn`1qq pWn`1qq´1 Gn´q Gn´q`1

Gn`1{Stabpσqq Gn`1{Stabpσq´1q Stabpσqq Stabpσq´1q

di

– –

´‘X

´‘Xq`1 ´‘Xq

Bi

Bi

and therefore (2) commutes. Taking alternating sums, we see that d1 corresponds to
q

ÿ

i“0

p´ ‘ Xq˚ “

#

p´ ‘ Xq˚ q even
0 q odd .

Assuming q “ 0, we recover HppGnq
p´‘Xq˚

ÝÝÝÝÝÑ HppGn`1q within the hE1-page as
the differential d1. The proof concludes as explained in [RWW17, Theorem 3.1]
by showing that, for the horizontal spectral sequence to converge to 0, the d1

differentials must be epimorphisms or isomorphisms in the wanted ranges. □

The theorem allows us to recover classical results in homological stability. Note
that, while the induction argument prevents k ă 2 without further assumptions,
we can improve the isomorphism range to n´a

k for any a by proving a different
homological connectivity result for Wn`1.

Example. To show homological stability for the symmetric groups Σn, we consider
pFinSet»,\,Hq as a module over itself. It is straightforward to show Wn`1pH, ptq
satisfies cancellation and injectivity. As explained in [RWW17, Section 5.1], the
complex of injective words Wn`1 is pn ´ 1q-connected. Letting k “ 2, the theorem
shows that

HppΣnq
p´ \ ptq˚

ÝÝÝÝÝÝÑ HppΣn`1q

is an isomorphism for p ď n´1
2 . This was first shown by [Nak60].

Example. To show homological stability for the general linear groups GLnpRq,
we consider pR-mod»,‘, 0q as a module over itself. Injectivity is satisfied, but
cancellation fails for general rings R. However, rings with finite stable rank s
have the invariant basis number property (Rn – Rm ùñ n “ m for n,m ě s).
Considering only such rings, Wn`1pRs, Rq satisfies injectivity, cancellation, and
pn´1

2 q-connectivity [RWW17, Section 5.3]. The theorem then shows that

HppGLs`npRqq
p´‘Rq˚

ÝÝÝÝÝÑ HppGLs`n`1pRqq

is an isomorphism for p ď n´1
2 . This was first shown by [vdK80].

Example. To show homological stability for the automorphism groups of free groups
AutpFnq, we consider pGroup», ˚, eq as a module over itself. Injectivity holds for
Wn`1pe,Zq, and we can obtain cancellation via Grushko’s Decomposition Theorem.
It can also be shown that Wn`1pe,Zq is pn´3

2 q-connected [RWW17, Section 5.2].
The theorem then shows that

HppAutpFnqq
p´˚Zq˚

ÝÝÝÝÝÑ HppAutpFn`1qq

is an isomorphism for p ď n´3
2 . This was first shown by [Gal11].
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