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1. Introduction

This is a sneak peek of my master’s thesis, due on May 1st, 2026, and
advised by Marco Varisco at the University at Albany, State University
of New York.

One of the main protagonists of this thesis is the global orbit →-category of
discrete groups Orb. It is the →-category obtained from the (2, 1)-category whose
objects are all discrete groups, 1-morphisms are injective group homomorphisms,
and 2-morphisms are given by conjugation; see Definition 5.2. We can take the slice
of this →-category over any fixed discrete group G, and by the following theorem
we recover the classical orbit 1-category O(G), whose objects are the transitive
G-sets G/H where H is a subgroup of G and whose morphisms are G-equivariant
functions; see Definition 5.1.

Theorem (Theorem 5.3). For each discrete group G, the →-categorical slice Orb/G
is equivalent to the 1-category O(G).

The analogue of this theorem for compact Lie groups was asserted without proof
in an unpublished preprint by Gepner and Henriques [GH07], where global orbit
categories were first introduced. For compact Lie groups, a proof sketch appears in
an unpublished preprint by Rezk [Rez14, Example 3.5.1], and a published proof is
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given by Linksens, Nardin, and Pol in [LNP25, Lemma 6.12]. We give a detailed
and somewhat simplified proof for arbitrary discrete groups in Section 5.

Using the theorem above we easily deduce the following corollary, a version of
which appears in [LRV03, Lemma 3.11]. Here, S(G) is the 1-category whose objects
are the subgroups H of G, and whose morphisms are equivalence classes of group
homomorphisms f : H ↑ K given by conjugation by some element g ↓ G, where
two homomorphisms are equivalent if they di!er by conjugation by some element
of K. We also have a canonical functor O(G) ↑ S(G) sending G/H to H; see
Definition 6.1 for details.

Corollary (Corollary 6.3). Let D be an →-category equivalent to the nerve of
a 1-category and let X : Orb ↑ D be a functor. For each discrete group G, the
composition

O(G) ↔ Orb/G
ω
↗↑ Orb

X
↗↑ D

factors through the canonical functor O(G) ↑ S(G).

Now fix a functor X : Orb ↑ D to a cocomplete →-category D, and fix a family F ,
i.e., a class of groups closed under isomorphisms and subgroups. Then, for each
discrete group G, we can define the assembly map

ωF
G : colim

OrbF
/G

X ↑ X(G)

where OrbF/G is the slice →-category of the full subcategory OrbF ↘ Orb spanned by
all groups in the family F ; see Section 8 for details. Given nested families F

→
↘ F ,

we have the following commutative triangle

colim
OrbF

→
/G

X

X(G)

colim
OrbF

/G

X

εF→
G

εF→
,F

G

εF
G

where ωF →,F
G is called the relative assembly map. It is then natural to ask when

the relative assembly map is an equivalence. This is answered by the following
theorem, called the Transitivity Principle, and originally proved by Lück and Reich
in [LR05, Theorem 65 (and Lemma 153)] in the context of equivariant homology
theories. For functors X out of the global orbit →-category, we use the theorem
and the setup above to give a more conceptual and categorical proof.

Theorem (Transitivity Principle; Theorem 8.7). Let X, D, F , and G be as above.
The relative assembly map

ωF →,F
G : colim

OrbF
→

/G

X ↑ colim
OrbF

/G

X

is an equivalence if, for each subgroup H of G with H ↓ F , the assembly map

ωF →

H : colim
OrbF

→
/H

X ↑ X(H)

is an equivalence.
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Next, we turn to examples. Assembly maps for algebraic K-theory and the related
Farrell-Jones Conjecture are intensely studied, and we can re-frame them in our global
framework. We show that for any ring spectrum R, the assignment G ≃↑ K(R[G])
gives a functor Orb ↑ Sp, where Sp is the →-category of spectra. We take a general
and conceptual approach using the equivalence [CMNN24, Example 2.19]

Perf(R)hG ↔ colim
Orb{1}

/G

Perf(R)
↓
↗↑ Perf(R[G]),

allowing us to apply the construction not only to K, but also to THH, TC, and
other similar functors.

...and more to come...

Figure 1. Inspired by Maxine Calle’s doodles

https://web.sas.upenn.edu/callem/research/
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